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Abstract

Background: Dietary transitions toward Westernized patterns (WDPs) (high in processed
foods, sugars, and fats) pose a global public health challenge. The Westernized Diet
Index (WDI) measures adherence to these patterns. However, its validity with respect
to metabolic biomarkers warrants thorough evaluation for use in epidemiological and
clinical research. Objectives: This study validates the WDI using metabolic biomarkers
(including anthropometrics, blood pressure, fasting blood glucose (FBG), triglycerides,
HDL-c, LDL-c, and total cholesterol), examines its association with metabolic syndrome
(MetS), and compares scoring methods to identify the most effective measure of WDPs
adherence. Methods: Data from 10,146 participants in the Fasa Adult Cohort Study (FACS)
were used. We calculated the WDI using global (WDI-G) and population (WDI-P) Z scores
and food group (WDI-FG)-based algorithms. Validation employed logistic and linear
regression, ROC (receiver operating characteristic) curves, Youden’s index, and k-means
clustering. Results: All WDI scoring methods (across all methods, higher scores indicated
lower adherence to WDPs) demonstrated a strong, significant association with all three
MetS definitions (WHO, NCEP: ATPIII, and IDF) and nearly all investigated metabolic
biomarkers. In fully adjusted logistic models, WDI Global (WDI-G) (OR: 0.23) and WDI
Food Groups (WDI-FG) (OR: 0.26) were significantly associated with MetS (based on
the WHO definition). Also, in fully adjusted linear regression models, a 10% increase
(reflecting lower adherence to WDPs) in the WDI-G score (range: —2.03 to 1.11) was
significantly associated with a 3.96 mg/dL reduction in FBG and a 2.61 cm reduction in
waist circumference. Additionally, ROC curves (AUC: 0.57-0.61) demonstrated that WDI
predicts MetS with moderate accuracy. The strongest associations were observed with
population-based scoring. In addition, based on comparative performance, WDI-G, WDI-P,
and WDI-FG appear most suitable for cross-population, within-cohort, and mechanistic
or intervention-focused research, respectively. Conclusions: The WDI shows promise as a
nutritional tool for assessing adherence to WDPs and exploring associations with metabolic
health outcomes, including MetS. These findings suggest that the WDI may be useful in
future dietary, public health, and clinical research, although further validation in diverse
populations is warranted.
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1. Introduction

The increasing prevalence and burden of noncommunicable diseases (NCDs) pose a
major global public health challenge [1]. NCDs, including cancer, cardiovascular diseases
(CVDs), type 2 diabetes (T2D), obesity, and metabolic syndrome (MetS), account for approx-
imately 80% of global mortality and morbidity, with CVDs alone being responsible for over
17.9 million deaths annually [1,2]. A main driver of many NCDs is obesity, with obesity
rates having tripled worldwide since 1975, with more than 1.9 billion adults being classified
as having overweight or obesity [3]. MetS, a cluster of conditions that increases the risk
of CVDs, stroke, and T2D, has seen a significant rise in prevalence, reaching an average
global prevalence of 28.2% in adults when the International Diabetes Federation (IDF)
definition is applied [4]. In the US, the prevalence of MetS among adults aged 20 years or
older increased from 37.6% in 2011-2012 to 41.8% in 2017-2018 [4].

A significant proportion of this disease burden is attributable to modifiable lifestyle
factors, particularly poor dietary habits [5]. In 2019, dietary risks were estimated to con-
tribute to 8 million deaths and 187 million disability-adjusted life years (DALYs) globally,
making unhealthy diets one of the leading risk factors for premature mortality and disease
burden [5]. Research has shown that dietary patterns have a profound influence on health
outcomes, particularly in the context of NCDs such as CVD [6], MetS [7], and cancers [8],
among others. In recent decades, the adoption of Westernized diets (WDs), characterized
by a high intake of processed foods, red meats, refined sugars, and fats, and a low intake of
dietary fiber, vitamins, and minerals, has become a global phenomenon [9,10]. This shift is
particularly evident in non-Western countries, where urbanization and globalization have
led to rapid dietary transitions that have significantly altered the nutritional landscape and
increased the risk of metabolic disorders and NCDs.

Beyond individual health risks, the global shift toward Westernized dietary patterns
(WDPs) also has broader implications for food systems and sustainability [11]. The demand
for highly processed, animal-based, and resource-intensive foods is reshaping agricultural
production, trade, and supply chains, with consequences for environmental sustainability,
equity, and global food security [12]. Understanding and quantifying adherence to WDs
is therefore critical not only for linking dietary transitions to metabolic health but also for
informing food system policies and interventions aimed at mitigating the dual burden of
chronic disease and unsustainable food consumption. Conversely, adherence to traditional
and health-promoting dietary patterns, such as the Mediterranean diet (MD), has been
extensively associated with a reduced risk of NCDs, including MetS [7], among others.
The protective effects of the MD are largely attributed to a high consumption of nutrient-
dense foods, such as fruits, vegetables, whole grains, and unsaturated fats, as well as its
rich profile of secondary bioactive plant metabolites, including antioxidants, which have
been shown to modulate a variety of cellular and metabolic pathways, enhancing insulin
sensitivity and reducing systemic inflammation [7], a hallmark of many NCDs [13].

A major challenge has been the limited availability of reliable and valid nutritional
assessment tools to comprehensively evaluate dietary patterns/habits. In recent decades,
studies have sought to develop reliable and valid methods, such as dietary indices, for
assessing overall nutritional quality. These methods evaluate dietary patterns and ad-
herence to guidelines and investigate the relationships between these assessments and
health outcomes. Well-established examples that have been widely utilized and whose
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validity has been assessed in numerous studies include the Dietary Inflammatory Index
(DII), Dietary Antioxidant Index (DAI), and the Mediterranean Diet Score (MDS) [14-19].
However, each of these indices has inherent limitations, including the exclusion of specific
food groups or essential nutrients, as well as non-nutrient but bioactive compounds such
as polyphenols and other phytochemicals [15,20].

Additionally, many indices lack flexibility in their application, often requiring com-
prehensive, detailed dietary data (e.g., the DII, which has up to 45 elements) that may
not always be available, thereby limiting their utility in certain research settings [15,17,20].
Some indices, such as the Dietary Diversity Score (DDS) and the Food Variety Score (FVS),
rely solely on qualitative categorizations of the diet (e.g., healthy, unhealthy), which reduces
the accuracy of the analyses rather than providing a continuous or quantitative measure of
adherence [16]. Additionally, some indices focus primarily on nutrient density (e.g., the
DALI [6,18]), while others emphasize certain food-group patterns (e.g., the MDS [16,19]),
making them more suitable for assessing specific dietary components rather than providing
a comprehensive evaluation of overall diet quality.

However, none of the existing dietary indices have explicitly focused on assessing
adherence to the WDPs, despite their well-established association with adverse health
outcomes and their increasing global prevalence [9,21]. The Westernized Diet Index (WDI)
is a novel nutritional tool designed and developed [22] to quantify adherence to the WD,
offering a standardized method to assess diet quality in both Western and non-Western
populations. While the WDI has shown promise as a measure of dietary adherence [22],
its validity, particularly in relation to metabolic health, has yet to be comprehensively
evaluated. Validation against metabolic biomarkers, which capture the physiological
consequences of dietary transitions, is crucial for establishing the relevance of the WDI
in relating diet quality to metabolic health. This study addresses this gap by evaluating
the WDI'’s validity through its association with key cardiometabolic biomarkers and by
providing a framework for its application in public health and clinical practice.

2. Materials and Methods
2.1. Population

The Fasa Adult Cohort Study (FACS) is an ongoing, longitudinal, prospective cohort
study investigating adults aged 35 years and older in Fasa, Iran. Participants underwent
comprehensive assessments, including anthropometric measurements, medical history,
demographic data, and dietary intake evaluation, using a validated 125-item food fre-
quency questionnaire (FFQ). Detailed information on the study design, data collection
protocols, and methodology has been described elsewhere [23]. Out of the 10,146 partici-
pants initially enrolled in the study, 10,121 (99.75%) had complete dietary data. Among
those with available dietary data, 9486 participants (93.7%) had complete MetS data and
were retained for analysis, while 635 participants (6.3%) were excluded due to missing MetS
data. Consequently, the final analytical sample comprised 9486 participants, accounting for
93.5% of the total study population (Supplementary Figure S1).

All participants were provided with detailed information regarding the study’s ob-
jectives and purpose, and they gave written informed consent. The study protocol was
approved by the Ethics Committee of Fasa University of Medical Sciences (Approval Code:
IR.FUMS.REC.1402.095) and was conducted in accordance with the principles outlined in
the Declaration of Helsinki.

2.2. Variables and Confounders

The following variables were extracted from the FACS database: dietary intake data,
including total energy intake, food groups, macro-and micronutrients, and non-nutients
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calculated by linking FFQ data to the USDA database using Nutritionist IV software
(version 7.0; N-Squared Computing, Salem, OR, USA), age (years), sex (women/men),
current smoking status (yes/no), anthropometric data included body mass index (BMI)
(kg/m?), waist circumstance (WC) (cm), hip circumstance (HC) (cm), waist to hip ra-
tio (WHR), physical activity assessed by the International Physical Activity Question-
naire (IPAQ) and expressed in the metabolic equivalent of tasks (METs), systolic and
diastolic blood pressure (SBP and DBP) (mmHg), pulse rate (bpm), mean arterial pres-
sure (MAP = DBP+1/3(SBP—DBP)) (mmHg), fasting blood glucose (FBG) (mg/dL), triglyc-
erides (TG) (mg/dL), total cholesterol (mg/dL), low-density lipoprotein cholesterol
(LDL-c) (mg/dL), and high-density lipoprotein cholesterol (HDL-c) (mg/dL).

2.3. Defining Metabolic Syndrome (MetS)

In this study, we employed three distinct definitions to define MetS, including those
established by the World Health Organization (WHO) [24,25], the National Cholesterol Ed-
ucation Program’s Adult Treatment Panel III (NCEP: ATPIII) [26,27], and the International
Diabetes Federation (IDF) [28]. These definitions were selected to ensure a comprehensive
assessment of MetS across different diagnostic criteria. The relevant cutoff values and
diagnostic components utilized for classifying participants according to each of these MetS
definitions are presented in Supplementary Table S1, outlining the specific criteria for
each definition, highlighting the components required for MetS diagnosis, which include
measurements of central obesity, blood pressure, triglyceride levels, HDL-c, and blood
glucose status.

2.4. Calculation of the Westernized Diet Index (WDI)

In this study, several methods were suggested to calculate the previously developed
WDI [22], with the aim of assessing the degree of adherence to a WD. The underlying con-
cept of the WDI was recently published [22]; the index is based on 30 food groups/items.
Supplementary Figure S2 provides a practical decision guide for selecting the appro-
priate WDI calculation method based on study objectives and data availability: global
Z-score-based indices (WDI-G and related variants) are recommended for cross-population
comparisons and international studies; population-based indices (WDI-P variants) are
better suited for within-cohort analyses emphasizing relative dietary contrasts; food group-
based (WDI-FG) and individual-component (WDI-I) approaches are most appropriate for
mechanistic or intervention-focused research targeting specific dietary components. The
detailed computational methods and algorithms are outlined below (in all methods, higher
scores indicate lower adherence to WDPs).

2.4.1. WDI Based on Global Z-Scores
a. WDI Global (WDI-G)

The WDI-G was calculated by standardizing dietary intake data using global Z-
scores (global mean of the food (item/group) intake and their standard deviations (SD))
(Supplementary Table S2). This was achieved by calculating global Z-scores ((participant’s
intake—global mean intake)/global SD) for each food component/item based on the mean
and SD of the intake across the global population, for which data were taken from several
sources, e.g., world food consumption database (FAO/WHO GIFT) [29,30], which included
both Western and non-Western populations (Supplementary Table 52). These Global Z-
scores were then multiplied by their corresponding WDI coefficients derived from a prior
study [22] (Supplementary Table S2).

Specifically, for each component/item, a Global Z-score was computed as:
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participant’s intake of food item n1 — Global mean intake of food item n1

Global Z — score for food item nl = Clobal SD of food item ni

and this was repeated for all 29 food items and divided by the number of food items
(n=29),1i.e., as follows:

WDI-G = ((Global Z-score for food item nl x coefficient of food item nl) + (Global Z-score for food item n2 x coefficient of food
item n2) + + (Global Z-score for food item n28 X coefficient of food item n28) + (Global Z-score for food item n29 X coefficient
of food item n29))/29

For the final WDI-G score, the global Z-scores for 29 out of 30 food components/items
were summed and divided by 29. It should be noted that no data were available for dietary
supplements, and as such, these were excluded from the calculation.

For food components/groups in the index [22] e.g., vitamins and minerals group, sum-
marizing various constituents such as vitamins, minerals, and secondary plant metabolites,
with different units of intake measurement, individual global Z-scores for each item were
calculated separately, then individual Z-scores summed up and divided by the number of
items in the group, providing one single Z-score for that food component/group, and then
that Z-score for that food component/group was included in the formula. Differing from
the previous group, for other food components/groups, such as fruit and vegetable groups,
whose constituents within the group had the same units, the global Z-scores were calculated
by summing the individual items within the group and standardizing them accordingly.

b. WDI Global Centralized (WDI-GC)

The WDI-GC is a variation of the WDI-G. To minimize the effect of extremely high or
low intakes, which are common in right-skewed dietary data [31], the WDI coefficients were
converted to a percentile score using Fractional Rank as % (see Supplementary Table S2
for the Fractional Rank of the WDI coefficients). To obtain a symmetrical distribution
centered on 0 (null) and bounded between —1 (maximal adherence to WD) and +1 (minimal
adherence to WD), each percentile score was doubled, and one was subtracted. This
centralization process enabled a more centralized scoring method to account for variations
in dietary intakes across different populations.

WDI-GC = ((Global Z-score for food item nl x Centralized coefficient of food item nl) + (Global Z-score for food item n2 x
Centralized coefficient of food item n2) + +(Global Z-score for food item n28 x Centralized coefficient of food item n28)
+(Global Z-score for food item n29 x Centralized coefficient of food item n29)) /29

¢.  WDI Global Standardized (WDI-GS)

The WDI-GS is also a variation of the WDI-G. Following the calculation of the WDI-
G, the WDI-GS was derived by further standardizing the WDI-G using the population’s
Z-score. This additional step ensured that dietary intake values were adjusted to the
population distribution, providing a more refined representation of adherence to the WD.

WDI-GS = (Participant’s WDI-G — population’s mean of the WDI-G) / population’s SD for the WDI-G

2.4.2. WDI Based on Population Z-Scores
a. WDI Population (WDI-P)

The WDI-P was calculated similarly to the WDI-G, but using population-specific data.
The means and SDs for food components/items within the population cohort were used to
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Population Z — score for food item nl =

standardize the intake data into population Z-scores. These Z-scores were then multiplied
by the corresponding WDI coefficients (Supplementary Table S2). Similar to WDI-G, for
certain groups with different units of intake, such as vitamins, minerals, and secondary
plant metabolites, population Z-scores for individual items were calculated, summed, and
averaged. Other food groups were similarly handled by calculating population Z-scores
for grouped items. In the final WDI-P, the Z-scores for 29 out of 30 food components/items
were summed and divided by 29.
Specifically, for each component/item, a population Z-score was computed as:

participant’s intake of food item n1 — Population mean intake of food item n1

Population SD of food item n1

repeated for all 29 food items and divided by the number of food items (1 = 29):

WDI-P = ((Population Z-score for food item nl X coefficient of food item nl) + (Population Z-score for food item n2
X coefficient of food item n2) + +(Population Z-score for food item n28 x coefficient of food item n28) +

(Population Z-score for food item n29 x coefficient of food item n29)) /29

b.  WDI Population Centralized (WDI-PC)

The WDI-PC is a variation of the WDI-P. Similar to the WDI-C, to minimize the ef-
fect of extremely high or low intakes, which are common in right-skewed dietary data [31],
the WDI coefficients were converted to a percentile score using Fractional Rank as % (see
Supplementary Table S2 for the Fractional Rank of the WDI coefficients). To obtain a sym-
metrical distribution centered on 0 (null) and bounded between —1 (maximally adherence
to WD) and +1 (minimally adherence to WD), each percentile score was doubled, and one
was subtracted.

WDI-PC = ((Population Z-score for food item nl x Centralized coefficient of food item nl) + (Population Z-score for
food item n2 x Centralized coefficient of food item n2) + + (Population Z-score for food item n28 x
Centralized coefficient of food item n28) + (Population Z-score for food item n29 x Centralized coefficient of food item

1n29))/29

c.  WDI Population Standardized (WDI-PS)

The WDI-PS follows the WDI-P approach, but similar to WDI-S, it incorporates an
additional step of standardization. After deriving the population-specific Z-scores, these
were standardized using the overall population Z-score to ensure that the data were
consistent with population-specific dietary intake distributions.

WDI-PS = (Participant’s WDI-P — population’s mean of the WDI-P) /population’s SD for the WDI-P

2.4.3. WDI Individual (WDI-I)

In a completely different approach, the intake of all food components/items was multi-
plied by their respective WDI coefficients (Supplementary Table S2) [22], including individual
vitamins, minerals, and secondary plant metabolites. Subsequently, the population Z-scores for
these weighted items (WDI coefficients * individual food components/items) were calculated
and averaged by dividing by the sum of the total number of components/items (57 items).
The key distinction between this method and the previous ones (WDIG and WDI-P) is that, in
earlier approaches, global/population Z-scores of the food components/items were calculated
first and then multiplied by the WDI coefficients. In contrast, this method first multiplies
the intake values by the WDI coefficients and then calculates the Z-scores (in this study, only
population Z-scores).
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WDI-I = ((population Z-scores of (food item nl x coefficient of food item nl)) + (population Z-scores of (food item
n2 x coefficient of food item n2)) + + (population Z-scores of (food item n56 X coefficient of food item n56))

+(population Z-scores of (food item n57 x coefficient of food item n57))) /57

2.4.4. WDI Food Groups (WDI-FG)

The WDI-FG categorizes food components into 18 distinct food groups, which in-
clude whole grains, refined grains, legumes, nuts and seeds, oils, refined fats, soft
drinks, coffee/tea/waters, processed foods, fruits, vegetables, red meat, processed meat,
white meat, fish, dairy, diet drinks, and alcoholic drinks. Similar to WDI-I, for the
WDI-FG, each food group’s intake is multiplied by the corresponding WDI coefficients
(Supplementary Table S2) [22], and the Z-scores for each food group are calculated. The
final score is the sum of the Z-scores for each group, divided by the total number of food
groups (18 items).

WDI-FG = ((population Z-scores of (food group nl x coefficient of food group nl)) + (population Z-scores of (food

group n2 x coefficient of food group n2)) + +(population Z-scores of (food group

n17 x coefficient of food group n17)) + (population Z-scores of (food group n18 x coefficient of food item n18))) /18

2.5. Statistical Analysis
2.5.1. Data Management and Descriptive Analyses

Data management and statistical analyses were performed using IBM SPSS Statistics
version 25.0 (IBM Corp, Armonk, NY, USA) and R version 4.4.1 (R Foundation for Statistical
Computing, Vienna, Austria). All tests were two-tailed, and statistical significance was set
at a p-value < 0.05.

Assumptions for all statistical analyses were carefully checked. The normality of
continuous variables was assessed using visual inspection of Q-Q plots. Homogeneity of
variances was evaluated using Levene’s test, which indicated no significant differences
in variances across groups, suggesting that the assumption of homogeneity of variances
was satisfied. Multicollinearity was assessed using variance inflation factors (VIFs), and no
issues were detected, as all VIFs were below the threshold. Linearity and independence
of observations were confirmed for all regression analyses by examining scatter plots of
residuals against predicted values and performing the Durbin-Watson test for autocorrela-
tion. The residuals of the linear regression models were assessed for homoscedasticity and
normality through visual inspection of residuals-versus-fitted-values plots and Q-Q plots,
respectively, and no violations were found.

Additionally, the Durbin-Watson statistic was checked to assess residual indepen-
dence, confirming that the assumption of no autocorrelation was satisfied. For the Receiver
Operating Characteristic (ROC) curves and AUC calculations, the independence of obser-
vations was ensured. The monotonic association between the true positive rate (sensitivity)
and the false positive rate (1-specificity) was also satisfied. For Youden’s index (] index), the
assumptions of independence of observations and appropriate sensitivity and specificity
calculations were conducted based on the classifier’s performance.

For the descriptive analyses, independent-samples t-tests were performed to compare
the means and SDs of WDI scores and key biomarkers across different MetS classifications
and K-means clusters. This allowed an assessment of how adherence to a WD (as measured
by WDI) varied with metabolic health status and clustering patterns based on metabolic
biomarkers. For each group (MetS vs. non-MetS and healthy vs. unhealthy clusters), means
and SDs were compared using independent-samples ¢-tests for WDI scores and for relevant
biomarkers, including FBG, cholesterol levels, triglycerides, LDL-c, HDL-c, WC, HC, WHR,
BMI, SBP, DBP, PR, and MAP.
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2.5.2. Logistic Regression Models

Crude and adjusted logistic regression models were used to estimate the odds ratios
(ORs) and 95% confidence intervals (CIs) for the association between different WDI scor-
ing methods and different MetS classifications. The crude models provided unadjusted
estimates, while the adjusted models accounted for potential confounders, including age
and sex. Furthermore, fully adjusted models incorporated additional variables, such as
physical activity (measured in METs), smoking status, and total energy intake, which could
influence the likelihood of MetS. By including these additional factors, the fully adjusted
models provided a more nuanced view of the WDI'’s association with MetS, accounting for
key lifestyle and health-related variables.

2.5.3. Linear Regression Models

Linear regression models were used to examine the association between WDI and
continuous metabolic biomarkers, including FBG, TG, cholesterol levels, and blood pressure.
These models were initially run in their crude form to identify unadjusted associations,
followed by adjustment for age, sex, and other potential confounders, such as physical
activity, smoking, and total energy intake. The fully adjusted models provided more precise
estimates of the strength and direction of the association between WDI and each metabolic
biomarker, allowing for a clearer understanding of how adherence to a WD influences
various metabolic processes. The regression coefficients (3) and 95% Cls were used to
quantify the strength and direction of the association, providing insights into the potential
biological mechanisms linking the WDI to health outcomes.

2.5.4. Receiver Operating Characteristic (ROC) Curves

Receiver operating characteristic (ROC) curves were constructed to assess the discrim-
inatory power of WDI in identifying individuals with MetS based on different definitions
(WHO, ATPIII, IDF). The ROC curves provided an effective means to evaluate the WDI's
ability to distinguish between individuals with and without MetS, helping establish its
clinical utility as a tool for identifying individuals at risk of MetS. The area under the curve
(AUC) was calculated using the nonparametric trapezoidal (Wilcoxon-Mann-Whitney)
method, as implemented in SPSS and R, for each WDI scoring method, with a higher AUC
indicating better discriminatory power. Optimal cutoff points for each scoring method were
identified using Youden'’s index, which maximizes the sum of sensitivity and specificity,
providing a balance between correctly identifying individuals with MetS and avoiding
false positives. This analysis allowed for the determination of the most appropriate WDI
thresholds for use in clinical and research settings.

2.5.5. K-Means Clustering

Unsupervised k-means clustering was applied to explore the association between WDI
and metabolic biomarkers in greater depth. Unlike regression or ROC analyses, which
quantify linear associations or predictive performance for predefined outcomes, clustering
identifies naturally occurring patterns within the data without imposing prior assumptions.
The clustering technique grouped participants into two distinct clusters: a “healthy” group
and an “unhealthy” group, based on their overall metabolic profiles. These empirically
derived clusters capture heterogeneity in metabolic health that may not be apparent from
individual biomarker associations alone. By identifying these distinct clusters, the analyses
offered valuable insights into how adherence to a WD is associated with different metabolic
health outcomes, providing an additional layer of construct validation. The final cluster
centers were compared across different WDI scoring methods to assess how well the WDI
aligned with distinct patterns of metabolic health. This approach not only complements
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the regression and ROC analyses but also offers insights into the broader patterns linking
dietary adherence to the WD with metabolic health, highlighting potential subgroups at
higher risk for adverse outcomes. Unlike the predefined MetS definitions, k-means cluster-
ing was applied as an unsupervised, data-driven approach to identify natural groupings
of metabolic health based on continuous biomarkers, thereby providing complementary
construct validation of the WDI independent of diagnostic thresholds.

3. Results
3.1. Descriptive Results

The baseline characteristics of the participants are presented in Table 1. The compar-
ison (mean =+ SD) of the WDI and biomarkers across participants categorized by MetS
definitions (WHO, ATPIII, IDF) is presented in Table 1. In addition to comparisons based
on established MetS definitions, k-means clustering was used to identify empirically de-
rived metabolic health profiles, allowing assessment of whether WDI scores differed across
data-driven ‘healthy’ and ‘unhealthy’ clusters. Across all MetS definitions, individuals with
MetS consistently showed lower WDI scores compared to those without MetS, with statisti-
cally significant differences (p < 0.001 for all comparisons), except for the WDI individual in
the IDF definition (p-value = 0.62). Specifically, the mean WDI values were notably lower
in individuals with MetS (ranging from —0.32 to 0.96) than in those without MetS (ranging
from —0.13 to 0.98), indicating greater adherence to the WD in participants with MetS. In
terms of biomarker measurements, and as expected by its definition, individuals with MetS
had statistically significantly higher values for WC, HC, WHR, BMI, SBP, DBP, FBG, TG,
and total cholesterol (all p < 0.001).

The WDI methods exhibited varying ranges (minimum-maximum): WDI-G ranged
from —2.03 to 1.11 (3.14 units), WDI-GC from —3.06 to 3.21 (6.27 units), WDI-GS from
—9.39 to 6.20 (15.59 units), WDI-P from —0.36 to 0.42 (0.78 units), WDI-PC from 0.27 to 1.83
(1.56 units), WDI-PS from —7.27 to 8.77 (16.04 units), WDI-I from —3.59 to 1.07 (4.66 units),
and WDI-FG from —1.91 to 2.81 (4.72 units) (means & SD are presented in Table 1).

Table 1. Comparison (mean =+ SDs or (n%)) of baseline characteristics, WDI scores, and biomarkers
by MetS and K-means clusters.

MetS (WHO) MetS (ATPIII) MetS (IDF) K-Means Cluster **
Variables Total = 9486 No = 8733 Yes = 753 P No = 7672 Yes = 1814 - No = 7727 Yes = 1759 - Healthy = Unhealthy = vl
(921%) T 7.9%) Value (80.9%) T 19.1%) T Value #1.5%) t a8.5%) T Value 8282 (87.3%) 1202 127%)  PTYANE
Baseline characteristics
Age (years) 489+ 94 485494 5404+ 8.4 <0.001 483+ 94 516492 <0.001 483497 516492 <0.001 490495 4874901 0.402
Sex (women) 52,92 (55.8%) 4738 (89.5%) 554 (10.4%) <0001 3911 (739%)  1381(261%) <0001 3852 (728%)  1440(27.2%) <0001 4686 (88.5%) 605 (11.4%) <0.001
METs 414+112 417+114 381477 <0001 4214117 385+8.1 <0001 4214117 382+76 <0001 4154113 404+1038 <0.001
Smoking o 8020 o 49, o o 9 o o
st (o) 8711 (91.8%) ©2.06%) 691 (7.93%) 0945 7006 (804%)  1705(19.6%)  <0.001 7051 (80.9%) 1660 (191%) <0001  7615(874%) 1094 (126%) 0284
;"t:lf'(‘ﬁfly) 2922 + 1134 2043 + 1129 26861159 <0.001 2958 + 1141 277241090 <0001 2963 1142 2742 £1081 <0001 2907 +1133 3030 +1138 <0001
WC (cm) 93241138 925+116 10194106 <0001 910 £112 1026 + 9.4 <0001 908110 1040+ 874  <0.001 254119 9814938 <0.001
HC (cm) 99.6 + 89 992487 1035+ 9.6 <0.001 984+ 86 104485 <0.001 982+ 85 1055 +93 <0.001 92490 1019 +7.8 <0.001
WHR 0.93 % 0.06 0.93 4 0.04 0.98 % 0.05 <0001 0924006 0.98 4 0.05 <0001 0924006 0.99 +0.05 <0.001 0.93 % 0.06 0.96 + 0.06 <0.001
(k?f@) 257 +48 25448 287 £ 46 <0.001 249 +46 291 +42 <0.001 248 445 297 +4.1 <0.001 254449 27.6 + 4.1 <0.001
(m]fgg) 7454120 740+ 117 801 4122 <0.001 7294113 8134125 <0.001 7314113 807+ 127 <0.001 740 +119 7754121 <0.001
SBP (mmHg) 1114 + 189 1104 + 180 122.7 4 21.1 <0001 1086+ 17.1 12324200 <0001 1089 +17.1 124 +£205 <0001  110.8 4185 1160 £186  <0.001
PR (bpm) 742 +10.7 739 +£107 771+ 111 <0.001 735+ 10.6 772 £107 <0.001 735+ 10.6 7724108 <0.001 739 +£10.7 762 +10.9 <0.001
MAP 868 + 135 8614132 9434141 <0001 8484126 9524141 < 85.0 +12.6 946+ 144 <0.001 863 4134 904+ 135 <0.001
(mmHg) 0.001
(ml; liiu 929 +296 8934210 1358+ 624  <0.001 882 4206 1134487  <0.001 89.3 4234 1089+ 447  <0.001 91.7 4269 10154430  <0.001
TG (mg/dL) 1322+ 825 12784782 183841093 <0001  1155+658 202941056 <0001 11864713 19204999 <0001 10924403  2908+1174  <0.001
C(l;;’ée/sée]f)"l 185.8 + 39.0 1852 + 383 1923+466 <0001  183.1+376 1974 +£425 <0001  183.0 4376 1979 £424 <0001 1812 +36.0 21734440  <0.001
(nl::}“‘; ) 107.9 +32.8 108.0 + 323 106.9 + 385 0.404 106.8 + 32.0 1234360 <0001 10664320 11354358 <0001  107.04314 11364408  <0.001
(E:/Ld'i) 5144160 517 4161 486+ 15.1 <0001 5314164 454123 <0001 5274164 4614132 <0.001 5234160 455+ 148 <0.001
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Table 1. Cont.
MetS (WHO) MetS (ATPIII) MetS (IDF) K-Means Cluster **
Variables Total = 9486 No = 8733 Yes =753 p- No =7672 Yes = 1814 P No=7727 Yes = 1759 - Healthy = Unhealthy = Value
©921%) T 7.9%) t Value (80.9%) T 19.1%) Value 81.5%) T (18.5%) T Value 8282 (87.3%) 1202 (127%) P
WDI scores
WDEG * —0.1440.20 0144020  —0204£019 <0001  —0134020  —018+020  <0.001 ’g'zlgoi 0184020 <0001 01340200  —0.184021  <0.001
WDI-GC * 0.72 4+ 040 0.73 4 040 0.60 % 0.39 <0001 0744040 0.65 4 0.40 <0001 0744040 0.64 4041 <0001 0734040 0.64 4+ 042 <0.001
—15
WDI-GS * 284 X11(?o * 0.03 4 1.00 0294096  <0.001 004099 0184100 <0001 004099 0194101 <0001  0.03+099 —019+104  <0.001
WDI-P * —0.01 + 0.049 —0014005  —003+005 <0001  —0.014005  —0.024005 <0001  —0.01+005 ’g'gff <0001 —0014+005  —0024005  <0.001
WDI-PC * 0.98 0,10 0.98 4 0.10 0.95 % 0.10 <0001 0984010 0.96 4 0.10 <0001 098010 0.96 % 0.10 <0001 098010 0.96 010 <0.001
—16 .
WDI-PS * 7:30 X11(?o * 0.03 4 1.00 0324096 <0001  0.04+1.00 0194096 <0001  0.04+100 0194097 <0001 0024099 0144102 <0.001
~16 _ _
WDLT * TSR 000054035 0014035 <0001 00001 +035 0.0005 % <0.001 000~ 00038+035 0618 0008E035 0054036 <0001
. o016
WDIFG * 4421070 + 0.007 + 026 —008+£025  <0.001 001 +0.26 —005+024  <0.001 001 +0.26 0054024 <0001  0.004+026 —0.03+026  <0.001

0.26

* For the detailed calculation methods, please see the Section 2. t No: without MetS, Yes: having MetS. ** Cluster 1
is labeled as “healthy” and Cluster 2 as “unhealthy” groups; for details, see Supplementary Table S7. The k-means
clusters represent data-driven groupings based on metabolic biomarkers and are intended to complement, not
replace, clinical MetS definitions. WDI: Westernized diet index, WDI-G: WDI global, WDI-GC: WDI global
centralized, WDI-GS: WDI global standardized, WDI-P: WDI population, WDI-PC: WDI population centralized,
WDI-PS: WDI population standardized, WDI-I: WDI individual, WDI-FG: WDI food groups, MetS: metabolic
syndrome, METs: metabolic equivalents, DBP: diastolic blood pressure, SBP: systolic blood pressure, PR: pulse rate,
bpm: beats per minute, FBG: fasting blood glucose, TG: triglycerides, LDL-c: low-density lipoprotein cholesterol,
HDL-c: high-density lipoprotein cholesterol, WHO: World Health Organization, ATPIII: Adult Treatment Panel
III, IDF: International Diabetes Federation. Overall, these results indicate that the WDI and associated biomarkers
were significantly different between individuals with and without MetS, as well as between the healthy and
unhealthy K-means clusters, highlighting the associations between a WD and poor metabolic health.

3.2. Results from Logistic Regression Models
3.2.1. Crude Logistic Regression Models

The crude associations between various methods of calculating the WDI and the
likelihood of having MetS, as estimated by logistic regression models, are shown in
Supplementary Table S3. For almost all WDI estimation methods, significant associations
were observed with the odds of MetS across the different definitions, with all p-values
being less than 0.001. The WDI-G and WDI-P demonstrated the strongest associations.
Similar trends were observed for the ATPIII and IDF definitions, with significant associa-
tions. In contrast, the WDI-I did not show significant associations with MetS, suggesting
that individual food component intakes alone were not as strongly associated with MetS
compared to the global and population-based methods, as well as the food group-based
methods. The WDI-FG demonstrated moderate associations (Supplementary Table S3).

3.2.2. Age and Sex Adjusted Logistic Regression Models

The age and sex-adjusted ORs and 95% ClIs for the association between different WDI
estimation methods and various definitions of MetS, as assessed through logistic regression
models, are presented in Supplementary Table S4. All WDI variants showed significant
associations with MetS across the three definitions, with WDI-P exhibiting the strongest
associations and other variants (WDI-G, WDI-GC, WDI-GS, WDI-PC, WDI-PS, WDI-I, and
WDI-FG) showing similar significant relationships (Supplementary Table S4).

3.2.3. Fully Adjusted Logistic Regression Models

Fully adjusted logistic regression models—adjusted for age, sex, metabolic equivalents
(METs), current smoking status, and total energy intake—for assessing the ORs and CIs for
the association between different WDI estimation methods and various definitions of MetS
are shown in Figure 1 and Table 2.
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WDI-I : ° :
WDI-PS* ° —e— ——
WDI-PC* r@— —e— —@ |
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WDI-G* : d : : ° | : ° |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
OR (95%ClI)** OR (95%Cl)** OR (95%Cl)**

Figure 1. Association (ORs and 95%Cls) between different WDI estimation methods and various MetS definitions in fully adjusted logistic regression models.
** Adjusted for age, sex, METSs, current smoking status, and total energy intake. All p-values < 0.05. * For the detailed calculation methods, please see the Section 2
(in all methods, higher scores indicate lower adherence to WDPs). WDI: Westernized diet index, WDI-G: WDI global, WDI-GC: WDI global centralized, WDI-GS:
WDI global standardized, WDI-P: WDI population, WDI-PC: WDI population centralized, WDI-PS: WDI population standardized, WDI-I: WDI individual, WDI-FG:
WDI food groups, OR: odds ratio, CI: confidence interval, MetS: metabolic syndrome, WHO: World Health Organization, ATPIII: Adult Treatment Panel III,
IDF: international diabetes federation, METs: metabolic equivalents.
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Table 2. Association (ORs and 95%Cls) between different WDI estimation methods and various MetS
definitions in fully adjusted logistic regression models *.

Calculation Methods ** WHO p-Value ATPIII p-Value IDF p-Value
WDI-G 0.23 (0.10, 0.53) <0.001 0.42 (0.22, 0.80) 0.009 0.36 (0.17, 0.78) 0.009
WDI-GC 0.48 (0.32,0.73) <0.001 0.65 (0.46, 0.87) 0.009 0.60 (0.41, 0.88) 0.009
WDI-GS 0.75 (0.63, 0.88) <0.001 0.84 (0.73, 0.96) 0.009 0.82 (0.70, 0.95) 0.009
WDI-P 0.001 (0.000032, 0.043) <0.001 0.01 (0.001, 0.25) 0.004 0.01 (0.000483, 0.42) 0.014
WDI-PC 0.03 (0.006, 0.21) <0.001 0.12 (0.03, 0.50) 0.004 0.12 (0.02, 0.65) 0.014
WDI-PS 0.72 (0.60, 0.86) <0.001 0.81(0.71, 0.93) 0.004 0.81 (0.69, 0.96) 0.014
WDI-I 0.24 (0.12, 0.48) <0.001 0.28 (0.16, 0.48) <0.001 0.25 (0.14, 0.45) <0.001
WDI-FG 0.26 (0.14, 0.47) <0.001 0.40 (0.25, 0.63) <0.001 0.373 (0.23, 0.62) <0.001

* Adjusted for age, sex, METs, current smoking status, and total energy intake. ** For detailed calculation methods,
please refer to the Section 2 (in all methods, higher scores indicate lower adherence to WDPs). WDI: Westernized
diet index, WDI-G: WDI global, WDI-GC: WDI global centralized, WDI-GS: WDI global standardized, WDI-P:
WDI population, WDI-PC: WDI population centralized, WDI-PS: WDI population standardized, WDI-I: WDI
individual, WDI-FG: WDI food groups, OR: odds ratio, CI: confidence interval, MetS: metabolic syndrome, WHO:
World Health Organization, ATPIII: Adult Treatment Panel III, IDF: International Diabetes Federation, METs:
metabolic equivalents.

All WDI estimation methods continued to show significant associations with MetS
across all three definitions. The WDI-G demonstrated significant associations with all three
MetS definitions (ORs for MetS based on WHO, ATPIII, and IDF were 0.23, 0.42, and 0.36,
respectively, p-values < 0.001). Similarly, the WDI-GC also showed significant associations
with MetS. The ORs ranged from 0.78 for WHO to 0.60 for IDF (p-values < 0.001). The WDI-
GS demonstrated similar associations with MetS (ORs of 0.75 for WHO, 0.84 for ATPIII,
and 0.82 for IDF). Again, all associations were statistically significant (p-values < 0.01).
The WDI-P showed particularly strong associations with MetS (ORs were 0.001 for WHO,
0.014 for ATPIII, and 0.014 for IDF, p-values < 0.014) (Figure 1 and Table 2).

The WDI-PC and WDI-PS also demonstrated significant associations with MetS (ORs
for the WDI-PC were 0.03 for the WHO, 0.12 for the ATPIII, and 0.12 for the IDF, p-values
< 0.014). The WDI-PS showed ORs of 0.72 for WHO, 0.81 for ATPIII, and 0.81 for IDF
(p-values < 0.014). The WDI-I showed significant associations with MetS across all three
definitions (ORs ranging from 0.24 for the WHO definition to 0.25 for the IDF definition,
p-values < 0.001). Finally, the WDI-FG method showed significant associations with MetS
(ORs of 0.26 for WHO, 0.40 for ATPIII, and 0.37 for IDF (p <0.001 for all)) (Figure 1 and
Table 2).

3.3. Results from Linear Regression Models
3.3.1. Crude Linear Regression Models

The crude linear regression models investigating the associations between various
WDI methods and a range of metabolic biomarkers are shown in Supplementary Table S5.
Significant inverse associations were observed between the WDI and several metabolic
biomarkers. The WDI-G, WDI-P, and WDI-FG exhibited strong negative associations (in
all methods, higher scores indicate lower adherence to WDPs) with WC, HC, and BML
In addition, significant inverse associations were observed across all WDI methods for
the blood pressure-related biomarkers, including SBP and DBP. The strongest associations
were found for SBP, DBP, and MAP with the WDI-P (all p < 0.001). In addition, the WDI-P
method showed the most robust associations with TG, FBG, and cholesterol (all p < 0.001).
Interestingly, no significant associations were found between LDL-c and HDL-c levels
across most WDI methods, except for a positive, significant association with HDL-c in
WDI-I (p < 0.001) (Supplementary Table S5).
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3.3.2. Age and Sex Adjusted Linear Regression Models

Supplementary Table S6 presents the associations between various methods of esti-
mating the WDI and different metabolic biomarkers in linear regression models adjusted
for age and sex. All WDI methods (global, population-based, individual, and food groups)
demonstrated significant associations (p < 0.001) with multiple biomarkers. Blood pressure
measurements, including DBP, SBP, and MAP, were significantly associated with all WDI
estimation methods. The strongest associations were observed for SBP and DBP with the
WDI-G and WDI-P (p-values < 0.001). FBG exhibited strong associations, particularly with
the WDI-G and WDI-P, with all p-values < 0.001. Similarly, TG and cholesterol showed
significant associations with most WDI methods, with the WDI-G showing the most pro-
nounced effects. In contrast, associations with LDL-c were weaker and not consistently
significant across all WDI methods. For HDL-c, the most significant and positive asso-
ciations were observed with the WDI-P, WDI-PC, and WDI-I, all with p-values < 0.05
(Supplementary Table S6).

3.3.3. Fully Adjusted Linear Regression Models

Fully adjusted linear regression models—adjusted for age, sex, METs, smoking status,
and total energy intake—investigating the associations between different WDI methods
(higher scores indicate lower adherence to WDPs) and various metabolic biomarkers are
presented in Figure 2 and Table 3. For DBP, all methods revealed significant associations,
with the WDI-G and WDI-P showing strong associations (3 = —3.24 and 3 = —17.88, respec-
tively); this corresponds to a 10% increase in WDI-G (range: —2.03 to 1.11; 10% = 0.31 units)
and WDI-P (range: —0.36 to 0.42; 10% = 0.08 units) was associated with decreases of ap-
proximately 1.02 mmHg and 1.39 mmHg in DBP, respectively. SBP was associated with
several WDI methods, particularly the WDI-P ( = —14.20) and WDI-PS ( = —7.10); in
other words, a 10% increase in WDI-P (10% = 0.08 units) and WDI-PS (10% = 1.60 units)
was associated with decreases of approximately 1.11 mmHg and 11.38 mmHg in SBP,
respectively. MAP was negatively related to all WDI methods, e.g., WDI-G (3 = —3.165)
and WDI-P (3 = —16.65); expressed differently, a 10% increase in WDI-G (10% = 0.31 units)
and WDI-P (10% = 0.08 units) was associated with decreases of approximately 0.99 mmHg
and 1.30 mmHg in MAP, respectively. FBG exhibited strong negative associations across
all WDI methods, particularly with the WDI-G (3 = —12.59) and WDI-P (3 = —46.16); in
other words, a 10% increase in WDI-G (10% = 0.31 units) and WDI-P (10% = 0.08 units)
was associated with decreases of approximately 3.95 mg/dL and 3.60 mg/dL in FBG,
respectively. TG was negatively associated with all methods, with the WDI-G and WDI-P
showing strong associations (3 = —37.502 and 3 = —119.093, respectively); in other words,
a 10% increase in WDI-G (10% = 0.31 units) and WDI-P (10% = 0.08 units) was associated
with decreases of approximately 11.78 mg/dL and 9.29 mg/dL in TG, respectively. Choles-
terol, LDL-c, and HDL-c did not show significant associations with most WDI methods,
except for LDL-c and cholesterol with the WDI-I ( = —2.73 and 3 = —8.51, respectively);
expressed differently, a 10% increase in WDI-I (range: —3.59 to 1.07; 10% = 0.47 units),
was associated with decreases of approximately 1.27 mg/dL and 3.97 mg/dL in LDL-C
and total cholesterol, respectively. HDL-c exhibited a significant positive association with
the WDI-FG (B = 2.00); in other words, a 10% increase in WDI-FG (range: —1.91 to 2.81;
10% = 0.47 units) (higher scores indicate lower adherence to WDPs) was associated with
an increase of approximately 0.94 mg/dL in HDL-c, but no significant associations were
observed for the other WDI methods (Figure 2 and Table 3). Given the large sample size,
statistical significance was interpreted in conjunction with the magnitude of the effect
size. Although several associations reached high statistical significance, their biological
relevance was evaluated based on the direction and magnitude of the estimated effects.
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Taken together, all WDI estimation methods remained significantly associated with
MetS in the fully adjusted logistic regression models, with the population-based and
food group methods showing robust associations (Figure 1 and Table 2). In addition, the
results from linear regression models suggest that several WDI methods were consistently
associated with various metabolic biomarkers, with the strongest effects generally observed
for the global and population-based WDI methods (Figure 2 and Table 3).

3.4. Results from ROC Curves

The performance of the WDI in predicting MetS is presented in Figure 3. The AUC
values for WDI varied across the different definitions. Overall, the WDI demonstrated
moderate performance in predicting MetS across the various definitions, with similar AUC
values observed for the global, population, and food group-based WDI models (Figure 3).

3.5. Results from K-Means Clustering

The final cluster centers for health indicators and the WDI for the healthy (Cluster 1)
and unhealthy (Cluster 2) clusters are presented in Supplementary Table S7. The unhealthy
cluster showed higher levels of key biomarkers, including WC, DBP, SBP, FBG, TG, choles-
terol, and LDL-c, compared with the healthy cluster. In contrast, HDL-c was higher in the
healthy cluster. The WDI values were slightly less negative in the healthy cluster, indicating
a milder WD pattern than in the unhealthy cluster. When comparing K-means clusters
(Table 1), Cluster 2 (unhealthy) exhibited significantly lower WDI values (indicating higher
adherence to WDPs) across all subcategories (WDI global, population, individual, and
food groups) compared to Cluster 1 (healthy), with p-values consistently below 0.001. This
trend was also observed in WDI-P measures, where Cluster 2 showed lower mean values
(e.g., WDI-P: —0.018 in Cluster 2 vs. —0.010 in Cluster 1). Additionally, Cluster 2 showed
higher biomarker levels than Cluster 1. For instance, TG levels in Cluster 2 were signifi-
cantly elevated (291 mg/dL) compared to Cluster 1 (109 mg/dL) (Table 1). LDL-c levels did
not show significant differences across MetS categories. However, significant differences
were found between K-means clusters, with Cluster 2 displaying higher LDL-c levels com-
pared to Cluster 1 (p < 0.001) (Table 1). The concordance between lower WDI scores and
the metabolically “‘unhealthy’ cluster provides additional, definition-independent support
for the construct validity of the WDL
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Table 3. Association (3 and 95%Cls) between different WDI estimation methods * and various metabolic (bio)markers in fully adjusted linear regression models **.

(Ml::ier) WDI-G R/ARS p-Value V:I;]zl- R/ARS p-Value VE;I- R/ARS p-Value WDI-P R/ARS p-Value “II’]():I- R/ARS p-Value WDI-PS R/ARS p-Value WDI-I R/ARS p-Value “II:ZI- R/ARS p-Value
we -833 —416 ~1.68 ~25.77 ~12.89 ~125 —647 ~3.40
o (-1028,  039/0.15  <0.001 (-514,  039/0.15  <0.001 (-207,  039/0.15  <0.001 (-3373,  038/0.14  <0.001 (—1686,  038/0.14  <0.001 (164,  038/014  <0.001 (-823,  038/014  <0.001 (—480,  037/014  <0.001
~6.38) ~3.19) ~1.28) ~17.82) ~891) ~0.87) —4.70) —2.01)
574 287 ~115 ~1735 -8.68 —0.84 —457 —2.34
HC (cm) (-7.14,  032/010  <0.001 (-357,  032/010  <0.001 (~144,  032/010  <0.001 (2308,  031/009  <0.001 (—11.54,  031/009  <0.001 (112, 031/009  <0.001 (-593,  032/010  <0.001 (-334,  030/009  <0.001
—4.34) —257) ~0.87) ~11.63) —5.81) —057) —3.39) ~1.33)
—0.03 ~0.01 ~0.006 ~0.10 —0.05 ~0.005 —0.02 —0.01 a1
WHR (—0.04,  042/017  <0.001 (-002,  042/0174  <0.001 (=001,  042/017  <0.001 (-014,  041/017  <0.001 (=007,  041/017  <0.001 (—0.007,  041/0.17  <0.001 (—0.03,  041/017  <0.001 (=0.02, o1 0.002
—0.02) —0.01) —0.004) —0.05) —0.03) —0.003) —0.01) —0.005)
B —3.52 ~176 071 —11.44 572 —0.56 —284 —159
kg/end) (—430,  038/014  <0.001 (-215,  038/014  <0.001 (—086,  0.38/0.14  <0.001 (—1464,  036/0.13  <0.001 (-732,  036/013  <0.001 (071, 036/0130  <0.001 (=355, 037/013  <0.001 (-215,  035/012  <0.001
—2.74) ~137) —0.55) —8.25) —432) —0.40) —2.14) ~1.03)
DBP —324 —1.62 —0.65 —17.88 —8.94 —0.87 —427 —267
(=536, 0.29/0.08 0.003 (—268,  0.29/0.08 0.003 (-108,  0.29/0.08 0.003 (—2645,  029/008  <0.001 (—1323,  029/008  <0.001 (—1287,  029/008  <0.001 (—6.18,  029/008  <0.001 (418, 029/008  <0.001
(mmg) ~1.14) ~0.56) ~0.23) ~931) —4.65) ~0.453) ~237) ~117)
sop —3.01 ~1.50 —0.61 —1420 ~7.10 —0.69 —3.56 ~155
(enemIg) (—614,  040/0.16 0.059 (-306,  040/0.16  0.0659 (-123,  040/0.16 0.059 (—2686,  0.40/0.16 0.028 (—1343,  040/0.16 0.028 (131, 040/016 0.028 (~6.38,  040/0.16 0014 (=377, 040/0.16 0171
0.11) 0.05) 0.02) —1.54) ~0.77) ~0.07) —0.74) 0.67)
PR -1.83 —0.91 —0.37 —3.08 ~1.54 ~0.15 —25 ~001
(opm) (=371, 0.20/0.04 0.056 (-185,  0.20/0.04 0.056 (=075, 0.20/0.04 0.056 (<1071, 0.20/0.04 0.430 (-536,  0.20/0.04 0.430 (052, 020/004 0.430 (—419,  021/004 0.004 (~135,  0.20/004 0.989
0.05) 0.02) 0.01) 456) 2.28) 0.22) —0.80) 1.33)
MAP ~3.16 ~1.58 —0.64 ~16.65 -8.33 —0.81 —4.04 ~230
(g (-549,  0.35/0.12 0.008 (-275,  0.35/0.12 0.008 (=110, 0.35/0.12 0.008 (-2610,  0.35/0.12 0.001 (~13.05,  0.35/0.12 0.001 (-127,  035/012 0.001 (—614,  035/012  <0.001 (=395, 035/012 0.007
—0.84) —0.42) ~0.17) —7.21) —3.60) —0.35) ~1.93) —0.64)
FBG ~12.59 —6.29 —253 —46.17 —23.08 —225 ~1051 —741
(mg/any (1682 024/005 <0001 (—841,  024/005  <0.001 (-338,  024/005  <0.001 (—6336,  023/005  <0.001 (—31.68,  023/005  <0.001 (=308,  023/005  <0.001 (—1434,  023/005  <0.001 (—1046,  023/0.05  <0.001
—8.36) —418) ~1.68) —2897) —14.48) —1.41) —6.68) —4.40)
. —37.50 ~18.75 —7.55 ~119.09 —59.55 —5.79 —25.89 ~17.92
(-5281,  016/0.02 <0001 (2641,  016/0.02  <0.001 (—10.63,  0.16/0.02  <0.001 (—18137,  015/0.02  <0.001 (—90.69,  0.15/0.02  <0.001 (-883,  015/002  <0.001 (<39.75,  0.14/002  <0.001 (—2884,  0.14/0.02 0.001
(mg/db) 5519 ~11.10) —447) —56.81) —28.41) ~2.76) ~12.03) ~7.00)
Cholesteral 6 —230 —0.93 ~19.68 —9.84 —0.96 —8.51 —2.02
(-1173,  017/0.02 0.206 (~586,  0.17/0.02 0.206 (-236,  0.17/0.02 0.206 (—4862,  0.17/0.02 0183 (—2431,  0.17/0.02 0.183 (<237,  017/002 0.183 (~1494,  0.17/0.03 0.010 (=710, 016/0.02 0.434
(mg/dL) 253) 1.26) 0.51) 9.26) 1.63) 0.45) —2.07) 3.05)
LDLc 153 0.76 031 237 ~1.19 —011 273 —043
gy (A3 011/001 0610 (-217,  011/001 0610 (-0.87,  0.11/001 0610 (2622, 0.11/001 0.845 (1311, 0.11/001 0.845 (128, 011/0.01 0.845 (=520, 029/008 0.029 (—461,  011/001 0.838
7.40) 3.70) 1.49) 21.48) 10.74) 1.04) —0.27) 3.74)
HDLc 137 0.69 0.28 6.51 326 0.32 —0.59 200
gy 1 029/008 0.323 (—068,  0.29/0.08 0.323 (=027, 0.29/0.08 0.323 (—456,  0.29/0.08 0.249 (-228,  0.29/0.08 0.249 (022, 029/008 0.249 (=590,  011/001 0.828 (0.06, 0.29/0.08 0.044
410) 2.05) 0.82) 17.59) 8.79) 0.86) 472) 3.93)

** Adjusted for age, sex, METs, current smoking status, and total energy intake. * For the detailed calculation methods, please see Section 2 (in all methods, higher scores indicate lower
adherence to WDPs). WDI: Westernized diet index, WDI-G: WDI global, WDI-GC: WDI global centralized, WDI-GS: WDI global standardized, WDI-P: WDI population, WDI-PC: WDI
population centralized, WDI-PS: WDI population standardized, WDI-I: WDI individuald, WDI-FG: WDI food groupse, [3: beta, CI: confidence interval, MetS: metabolic syndrome, DBP:
diastolic blood pressure, SBP: systolic blood pressure, PR: pulse rate, bpm: beats per minute, FBG: fasting blood glucose, TG: triglycerides, LDL-c: low-density lipoprotein cholesterol,
HDL-c: high-density lipoprotein cholesterol, R: R-squared, ARS: adjusted R-squared, METs: metabolic equivalents.
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Figure 2. Association (3 and 95%ClIs) between different WDI estimation methods * and various metabolic (bio)markers in fully adjusted linear regression models.
* Adjusted for age, sex, METs, current smoking status, and total energy intake. For detailed calculation methods, please refer to Section 2. WDI: Westernized diet
index, 3: beta, CI: confidence interval, MetS: metabolic syndrome, DBP: diastolic blood pressure, SBP: systolic blood pressure, PR: pulse rate, bpm: beats per minute,
FBG: fasting blood glucose, TG: triglycerides, Choles: cholesterol, LDL-c: low-density lipoprotein-cholesterol, HDL-c: high-density lipoprotein-cholesterol, ARS:
adjusted R-squared, METs: metabolic equivalents.
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Figure 3. Receiver Operating Characteristic (ROC) curves for WDI in predicting metabolic syndrome (MetS) based on different definitions. For all Null hypotheses:
true area = 0.5. AUC: area under the curve, WDI: Westernized Diet Index, WHO: World Health Organization, ATPIII: Adult Treatment Panel III, IDF: International
Diabetes Federation, OCO: optimal cutoff (threshold), J: Youden’s index = sensitivity + Specificity — 1. * For the details, please see Section 2.
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4. Discussion

This validation study demonstrated strong and significant associations between ad-
herence to the WD, as assessed by a novel dietary index, the WDI, considering 30 food
groups/dietary constituents, and metabolic health outcomes. Across all three MetS defini-
tions (WHO, ATPIII, IDF), higher WDI scores (indicating lower adherence to WD) were
consistently associated with lower odds of MetS. Among the various scoring methods,
the WDI-G and the WDI-I reduced the odds of MetS (WHO definition), a major metabolic
complication with a global prevalence of over 25% [4], by up to 99%. Higher WDI scores
(indicating lower adherence to WD) were also significantly associated with more favorable
metabolic biomarker profiles. The WDI-P method demonstrated the most pronounced
inverse associations with metabolic markers, i.e., a 25.7 cm decrease in WC, a 46 mg/dL
reduction in FBG, and a 14.2 mmHg drop in SBP per unit increase of the WDI; in other
words, a 10% increase in WDI-P (range: —0.36 to 0.42; 10% = 0.08 units) was associated with
decreases of approximately 2.00 cm in WC, 3.59 mg/dL in FBG, and 1.11 mmHg in SBP.
WDI-FG and WDI-I showed moderate associations with MetS and biomarkers. As expected
in large population-based studies, even small effect sizes may achieve statistical signifi-
cance; therefore, the findings should be interpreted with an emphasis on effect magnitude
and potential clinical relevance rather than p-values alone.

Additionally, ROC analyses indicated that WDI-P and WDI-FG had the highest dis-
criminatory power for MetS (AUC of 0.61), slightly outperforming WDI-G. The findings
suggest, for the first time, that while all WDI scoring methods modestly capture the
metabolic impact of a WD, population-based and standardized approaches provided the
strongest discriminatory value for metabolic risk. According to established benchmarks,
the observed AUC and Youden index values reflected modest diagnostic accuracy; how-
ever, they still suggest discrimination beyond chance and should be interpreted within a
construct validation rather than a diagnostic framework.

The WDI is inherently adaptable to diverse dietary contexts, making it suitable for
use across global populations with varying food cultures. Because the index is based on
food groups/items and standardized scoring rather than fixed dietary prescriptions, it can
accommodate plant-based diets and mixed dietary patterns common in Asian, African,
and other non-Western settings, as well as in Western settings, by recalibrating population-
based reference distributions while preserving the underlying Westernization construct.
In addition, the WDI is well-suited for integration within digital health tools, including
dietary assessment apps and Al-assisted monitoring platforms, enabling scalable, real-
time evaluation of dietary patterns in both research and applied settings. From a clinical
perspective, the WDI may serve as a practical tool for monitoring dietary risk in individuals
at elevated risk of MetS, supporting targeted lifestyle interventions and longitudinal follow-
up in preventive and clinical care.

Our findings align with previous studies examining the association between WD
adherence and metabolic health. For instance, a population-based prospective cohort
study (the Malmo Diet and Cancer Study (MDCS)) [32] found that higher WD adherence
was associated with adverse cardiometabolic traits at baseline and at follow-up after
~16 years, as well as an increased risk of MetS. The strong inverse associations we observed
between the WDI and MetS are consistent with the finding that individuals with higher
intakes of processed foods, sugars, and unhealthy fats tend to exhibit worse metabolic
health markers [32]. In accordance, a systematic review /meta-analysis [33] concluded that
“Healthy” and “Meat/Western” dietary patterns are significantly associated with reduced
and increased MetS risk, respectively.

Furthermore, our study supports previous findings [9,32-34] that dietary patterns
associated with the WD are associated with key biomarkers of MetS, including WC, BMI,
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BP, and glucose levels, as observed in the present study. Our results also corroborate
studies [9,34-39] showing that food groups characteristic of a WD (e.g., red meat, sugary
beverages, refined grains) are associated with markers of adiposity, insulin resistance, and
lipid profiles, among others. Additionally, the ROC curve analysis in our study, indicating
a moderate discriminatory ability of the WDI for MetS, aligns with findings from similar
studies that predict MetS using dietary patterns [40]. Although our AUC values were
moderate (0.57 to 0.61), they still highlight the potential of the WDI as a tool for identifying
individuals at higher risk of MetS.

When comparing the WDI with other diet quality indices, several distinguishing
but also similar aspects emerge. The Alternative Healthy Eating Index (AHEI) [7,41],
for instance, a commonly used, validated index in population-based studies, assesses
adherence to the Dietary Guidelines for Americans, promoting fruits, vegetables, whole
grains, and lean proteins while reducing unhealthy fats, sugars, and sodium. In contrast,
the WDI explicitly captures the extent to which an individual adheres to an undesired but
arguably more typical WDPs, characterized by a high intake of processed foods, red meats,
sugary beverages, and refined grains. This makes the WDI more specific in identifying
metabolic risks associated with poor dietary choices, while the AHEI focuses on adherence
to national dietary guidelines aimed at improving general health [15].

The MDS [7,16,19], a reliable and valid index that evaluates adherence to the MD, rich
in fruits, vegetables, legumes, whole grains, fish, and healthy fats, can be viewed as the
opposite of the WDI. However, the MDS [16,19] is only a food-group-based index, whereas
the WDI is more comprehensive, encompassing not only food groups but also specific
nutrients (e.g., fats, sugars, and fiber), non-nutrients (e.g., phytochemicals), and processed
food consumption. This broader scope of the WDI allows capturing a wider range of dietary
patterns and behaviors, allowing a nuanced assessment of various dimensions of dietary
habits and their association with metabolic health, whereas the MDS primarily assesses
adherence to an MD pattern and may not fully account for the complex interactions between
different nutrients and other dietary elements that contribute to metabolic outcomes.

The DQI-I [42] also differs from the WDI as it evaluates dietary diversity and nutrient
adequacy. The DQI emphasizes a holistic assessment of diet quality by considering both
beneficial and detrimental dietary components, such as the balance between fruits, vegeta-
bles, and nutrient-dense foods vs. consuming unhealthy fats and sugars [42]. Additionally,
the WDI includes additional detrimental components, such as high intake of processed
foods and refined grains, as well as beneficial components, such as phytochemicals, vita-
mins, and minerals, all of which have been linked to improved metabolic health outcomes.
While the DQI-I provides a more general measure of diet quality, the WDI's targeted eval-
uation offers a more direct and practical measure of the dietary influences on metabolic
health, making it particularly useful in identifying individuals at higher risk for MetS and
related conditions.

Unlike the WDI, the DASH (Dietary Approaches to Stop Hypertension) diet score [43]
focuses on a single health indicator: reducing high blood pressure through a diet rich
in fruits, vegetables, whole grains, lean proteins, and low-fat dairy, while emphasizing
low sodium intake. This index has been shown to improve heart health and MetS and
reduce hypertension [43,44]. While the DASH diet focuses on increasing beneficial nutrient-
dense foods, it does not explicitly highlight the detrimental effects of a WD pattern, such
as the overconsumption of processed and refined food products. Through its literature-
based relationship with several cardiometabolic markers, the WDI provides a more robust
discriminatory and predictive power for several chronic conditions, including obesity,
insulin resistance, and MetS.
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Despite the valuable insights our study provides, several limitations warrant con-
sideration. First, our study’s cross-sectional design limits the ability to establish causal
relationships between WD adherence and metabolic outcomes. While strong associations
were observed, the directionality of these relationships remains not fully established, and
future prospective studies are needed to confirm causality. Second, the use of self-reported
dietary intake data introduces the potential for recall bias and misreporting. Although we
attempted to mitigate these concerns through a validated FFQ, measurement error remains
a concern when relying on self-reported data.

Additionally, while the WDI provides a useful measure of dietary patterns, it is
inherently limited by its reliance on the availability of specific food items and nutrient
information, which may not fully capture the dietary nuances of individuals from very
diverse cultural or geographical backgrounds. Furthermore, the generalizability of our
findings may be limited, as our sample population may not fully represent all demographic
groups, and the results may not be applicable to populations with different dietary patterns
or risk profiles. Although the WDI captures WDPs beyond meat consumption alone and
integrates multiple food groups beyond animal products, the heterogeneity of vegetarian
and plant-based diets, including highly processed plant-based foods, may influence index
performance; however, due to sample size limitations, subgroup analyses by dietary pat-
terns (e.g., vegetarian vs. omnivorous) were not feasible in the current study, underscoring
the need for further validation in populations where such dietary patterns are prevalent
or rapidly evolving. Although models were adjusted for key demographic and lifestyle
factors, the limited availability of data on additional potential confounders, such as more
detailed information on the socioeconomic status and medication use, among others, raises
the possibility of residual confounding, which should be addressed in future studies with
more comprehensive covariate information. In addition, as the validation was limited to an
Iranian cohort, the global applicability of the WDI should be interpreted cautiously, and
future studies in diverse cultural settings, including populations with prevalent vegetar-
ian or plant-based diets undergoing dietary transition, are needed to confirm its broader
relevance. Lastly, while the metabolic biomarkers used in our analysis are important indi-
cators of metabolic health, they do not capture the full spectrum of metabolic dysfunction,
including genetic predispositions and other unmeasured factors that may influence the as-
sociation between diet and health. Future studies should incorporate more comprehensive
biomarkers and longitudinal designs to understand the long-term effects of WD patterns
on metabolic health.

Our study boasts several key strengths that significantly enhance its value in the field
of nutrition and metabolic health research. First, the application of the WDI enabled a
comprehensive, multidimensional assessment of dietary patterns, considering not only
food groups but also nutrients and non-nutrient aspects of the diet. This multifaceted
approach provides a more holistic perspective on the impact of diet on metabolic health
compared to single-component indices. Second, the study’s design used a large, diverse
sample, enhancing the external validity and generalizability of our findings to a broader
population. Additionally, by incorporating multiple diagnostic definitions of MetS (WHO,
ATPIII, IDF), our study provides a robust and comprehensive evaluation of metabolic
health across various criteria, thereby strengthening our conclusions. The use of advanced
statistical techniques, including linear mixed models and unsupervised k-means cluster-
ing, allowed us to account for potential confounders and individual variability, thereby
providing more reliable estimates of the associations between WDI scores and metabolic
biomarkers. Moreover, the inclusion of both global and population-based WDI scoring
methods enabled a nuanced comparison, highlighting the WDI's discriminatory and predic-
tive value across contexts and enhancing the precision of our results. The comprehensive
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nature of this approach reduces measurement bias and strengthens the reliability of the
findings. Our study also stands out due to the inclusion of a wide range of metabolic
biomarkers, providing a more in-depth understanding of the associations between diet and
metabolic health outcomes. Finally, our findings contribute novel insights to the existing
literature by not only validating the WDI as a predictor of metabolic risk but also identi-
fying specific methods within the WD], e.g., WDI-G, WDI-P, and WDI-FG, that are most
strongly associated with adverse health outcomes.

The WDI offers practical utility for both population-based and clinical research. In
epidemiological studies, the WDI enables standardized monitoring of dietary Western-
ization across populations and over time, facilitating comparisons between regions and
supporting surveillance of nutrition transition and metabolic risk. In clinical and preventive
settings, the WDI may be used to identify individuals or subgroups with high adherence to
WDPs and to monitor dietary changes. It is important to emphasize that the WDI variants
evaluated in this study were developed as dietary exposure metrics for epidemiological
and clinical research, not as clinical screening or diagnostic tools. Consequently, their
performance should not be judged solely by clinical criteria, but rather by their ability
to capture meaningful variations in dietary patterns associated with metabolic health at
the population level. Future research should focus on validating the WDI in culturally
diverse populations with varying dietary traditions, including predominantly plant-based
or mixed dietary patterns, and on integrating the index into digital and e-health platforms
(e.g., dietary apps and Al-assisted monitoring systems) to enhance scalability, real-time
assessment, and personalized nutrition interventions.

5. Conclusions

This validation study demonstrates that the WDI is an effective nutritional tool for
assessing dietary patterns. By capturing both food group and (non-)nutrient-related as-
pects of the WD, both health-promoting and health-detrimental ones, the WDI provides a
comprehensive measure of dietary adherence that is linked to key metabolic markers such
as WC, FBG, and blood pressure. Our findings validate the WDI as a modest predictor of
MetS, reinforcing its potential for use in clinical settings and public health applications.
Overall, the findings support the use of WDI variants as valid tools for characterizing
WDPs in research settings, while highlighting that their application should remain distinct
from clinical diagnosis. These results underscore the importance of considering dietary
patterns, particularly those characteristic of the WD, in the prevention and management
of metabolic disorders. The high consistency of our results with international studies
underlines the generalizability of the WDI across different populations. This is particularly
important given the global spread of WD habits and their associated metabolic risks. Future
research should aim to refine the WDI further and investigate its potential causal role in the
development of metabolic conditions, using longitudinal cohorts and dietary intervention
studies, thereby advancing its application as a valid nutritional tool for monitoring dietary
transitions and patterns and for guiding strategies for NCD prevention.
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according to MetS definitions; Table S2: Global daily mean intake of food parameters (+ SD) and their
corresponding Westernized Diet Index (WDI) coefficients; Table S3: Association (ORs and 95%CIs)
between different WDI estimation methods and various MetS definitions in crude logistic regression
models; Table S4: Association (ORs and 95%CIs) between different WDI estimation methods and
various MetS definitions in logistic regression models adjusted for age and sex; Table S5: Association
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